🎋 Parabola Berikut Yang Terbuka Ke Atas Adalah
Beberapaciri ciri dan bentuk umum parabola vertikal ini yang harus diketahui adalah: Terbuka ke atas apabila a> 0 dan terbuka ke bawah apabila a<0 ( bentuk umum y = ax 2 + bx + c.) Parabola tersebut akan memotong sumbu y pada titik (0,c) Untuk menentukan titik potong dengan sumbu x, substitusi nilai y=0 pada persamaan.
2 Bentuk baku persamaan parabola yang berpuncak di O(0,0) adalah : a. , parabola mendatar terbuka ke kanan b. , parabola mendatar terbuka ke kiri c. , parabola tegak terbuka ke atas d. , parabola tegak terbuka ke bawah 3. Bentuk baku persamaan parabola yang berpuncak di P(a,b) adalah : a.
Dengancara yang sama, kita dapat juga menentukan persamaan parabola lainnya. Dengan demikian, berdasarkan arah terbukanya, kita dapat membedakan persamaan parabola yang berpuncak di A(a, b) menjadi empat, diantaranya: Parabola horisontal (mendatar) yang terbuka ke kanan $(y - b)^2$ = $4p(x - a)$ Sumbu simetri parabola di atas y = b, titik fokus F(a + p, b), dan persamaan direktriksnya adalah x = a - p Parabola horisontal yang terbuka ke kiri $(y - b)^2$ = $-4p(x - a)$
Jikap > 0, parabola tersebut akan terbuka ke kanan. Jika p < 0, parabola tersebut akan terbuka ke kiri. Untuk lebih memahami mengenai persamaan suatu parabola dalam bentuk fokus-direktriks, perhatikan contoh berikut. Contoh 1: Menentukan Fokus dan Direktriks dari suatu Parabola Tentukan titik puncak, fokus, dan direktris dari parabola yang
Grafikfungsi kuadrat adalah suatu grafik yang dapat menjelaskan gambaran dari suatu persamaan atau fungsi kuadrat. Grafik fungsi kuadrat mempunyai beberapa macam sifat dan juga cara menyusunnya. Sementara itu, ada tiga jenis grafik pada fungsi kuadrat, yakni y = ax2, y = ax2 + c, dan y = a (x - h)2 + k. ADVERTISEMENT.
Darigrafik di atas, ada beberapa hal yang perlu dipahami terkait nilai yang mempengaruhi bentuk dari persamaan kuadrat, yaitu: Untuk nilai a, akan menentukan kurva parabola menjadi cembung atau cekung. Apabila nilai dari a lebih dari 0 (a > 0), maka bentuk parabola akan menjadi cekung atau terbuka ke atas.
2 Jika a>0 dan D=0, maka kurva parabola akan terbuka ke kanan dan menying-gung sumbu y pada dua titik yang berimpit; 3. Jika a>0 dan D<0, maka kurva parabola akan terbuka ke kanan dan tidak memotong sumbu y di mana pun; 4. Jika a<0 dan D>0, maka kurva parabola akan terbuka ke kiri dan memotong sumbu y pada dua titik yang berlainan; 5. Jika a<0
Berikutadalah sifa-sifat grafik fungsi kuadrat! Baca juga: Himpunan yang Memenuhi Fungsi Kuadrat, Jawaban Soal TVRI. Sifat grafik fungsi kuadrat berdasarkan nilai a. Nilai a merupakan koefisien pangkat tertinggi, yaitu koefisien pangkat kuadrat (x²). Nilai a menentukan ke arah manakah grafik parabola fungsi kuadrat terbuka.
Titikkoordinat yang dihasilkan adalah titik puncak parabola. Dalam contoh di sini, Anda harus memasukkan nilai 0 ke dalam persamaan 2x 2 -1 untuk mendapatkan nilai y, y = 2 x 0 2 -1 = 0 -1 = -1. Jadi, titik puncak parabola Anda adalah (0,-1), yang merupakan titik perpotongan parabola dengan sumbu y.
QocdpR. Seperti yang telah dijelaskan pada artikel sebelumnya, persamaan parabola dapat ditentukan dengan mengetahui titik puncaknya. Titik puncaknya dapat berada pada titik O0, 0 atau sembarang titik lainnya, misalkan titik Aa, b. Untuk persamaan parabola yang berpuncak di O0, 0 dapat dipelajari pada artikel [Baca Persamaan Parabola dengan Puncak di O0, 0] Sedangkan artikel kali ini akan membahas mengenai persamaan parabola yang berpuncak di Aa, b Perhatikan gambar berikut Gambar di atas, merupakan gambar parabola dengan puncak di A a, b. Sumbu simetri dari parabola tersebut sejajar dengan sumbu-x yang persamaanya y = b. Titik fokus focus dari parabola di atas berjarak p satuan dari kanan titik puncak dengan demikian koordinat fokus F menjadi a + p, b. Sedangkan garis direktriks directrix sejajar sumbu-y dan berjarak p satuan di sebelah kiri titik puncak dengan persamaan x = a - p atau x - a + p = 0. Persamaan parabola di atas dapat ditentukan dengan cara berikut. Misalkan, titik Px, y merupaksn titik yang dilalui oleh suatu parabola maka Jarak PF = Jarak PQ $\sqrt{x - a - p^2 + y - b^2}$ = $x - a + p$ $\sqrt{x - a - p^2 + y - b^2}^2$ = $x - a + p^2$ $x - a - p^2 + y - b^2$ = $x - a + p^2$ $x^2 + a^2 + p^2$ $-2xa -2xp + 2ap$ $+ y - b^2$ = $x^2 + a^2 + p^2$ $-2xa +2xp - 2ap$ $-2xp + 2ap$ $+ y - b^2$ = $2xp - 2ap$ $y - b^2$ = $2xp - 2ap$ $+2xp - 2ap$ $y - b^2$ = $4xp - 4ap$ $y - b^2$ = $4px - a$ Persamaaan terakhir merupakan persamaan parabola yang dicari. Dengan cara yang sama, kita dapat juga menentukan persamaan parabola lainnya. Dengan demikian, berdasarkan arah terbukanya, kita dapat membedakan persamaan parabola yang berpuncak di Aa, b menjadi empat, diantaranya Parabola horisontal mendatar yang terbuka ke kanan $y - b^2$ = $4px - a$ Sumbu simetri parabola di atas y = b, titik fokus Fa + p, b, dan persamaan direktriksnya adalah x = a - p Parabola horisontal yang terbuka ke kiri $y - b^2$ = $-4px - a$ Sumbu simetri parabola di atas y = b, titik fokus Fa - p, b, dan persamaan direktriksnya adalah x = a + p Parabola vertikal tegak yang terbuka ke atas $x - a^2$ = $4py - b$ Sumbu simetri parabola di atas x = a, titik fokus Fa, b + p, dan persamaan direktriksnya adalah y = b - p Parabola vertikal yang terbuka ke bawah $x - a^2$ = $-4py - b$ Sumbu simetri parabola di atas x = a, titik fokus Fa, b - p, dan persamaan direktriksnya adalah y = b + p Perlu diingat bahwa pada tiap persamaan nilai p adalah positif dan p merupakan jarak fokus dengan titik puncak parabola. Untuk lebih jelasnya perhatikan contoh soal berikut Contoh 1 Diketahui persamaan parabola $y^2 - 4y - 4x + 8$ = $0$, tentukan koordinat titik puncak, persamaan sumbu simetri, koordinat fokus dan persamaan direktriksnya! Penyelesaian Agar memudahkan menentukan unsur-unsur yang dicari, maka kita ubah persamaan parabola yang diketahui menjadi persamaan bakunya. $y^2 - 4y$ = $- 4x + 8$ $y^2 - 4y + 4$ = $-4x + 8 + 4$ $y - 2^2$ = $-4x + 12$ $y - 2^2$ = $-4x - 3$ $y - 2^2$ = $-41x - 3$ Dari persamaan terakhir, terlihat bahwa parabola merupakan parabola horisontal yang terbuka ke kiri dengan p = 1 Titik puncaknya A3, 2 Persamaan sumbu simetri y = 2 sejajar sumbu-x Koordinat fokus Fa - p, b = F3 - 1, 2 = F2, 2 Persamaan direktriksnya x = a + p = 3 + 1 = 4 atau x = 4 sejajar sumbu-y Contoh 2 Tentukan persamaan parabola yang memiliki puncak di 2, 4 dan fokus di 5, 4 Penyelesaian A2, 4 F5, 4 ini berarti p = 5 - 2 = 3 Persamaan para bola, merupakan parabola horisontal terbuka ke kanan. Sehingga $y - b^2$ = $4px - a$ $y - 4^2$ = $43x - 2$ $y - 4^2$ = $12x - 2$ Jadi, persamaan parabolanya adalah $y - 4^2$ = $12x - 2$ Contoh 3 Tentukan persmaan parabola yang berpuncak di 2, -3 dan melalui titik 0, -5 dengan sumbu simetri sejajar dengan sumbu-y! Penyelesaian Parabola berpuncak di 2, -3 dan melalui titik 0, -5 dengan sumbu simetri sejajar dengan sumbu-y, ini berarti parabola merupakan parabola vertikal terbuka ke bawah $x - a^2$ = $-4py - b$ $x - 2^2$ = $-4py - -3$ $x - 2^2$ = $-4py + 3$ Parabola melalui titik 0, -5 maka diperoleh $0 - 2^2$ = $-4p-5 + 3$ $4$ = $-4p-2$ $4$ = $8p$ $p$ = $\frac{4}{8}$ $p$ = $\frac{1}{2}$ Sehingga persamaan parabolanya $x - 2^2$ = $-4\frac{1}{2}y + 3$ $x - 2^2$ = $-2y + 3$ Jadi, persamaan parabolanya adalah $x - 2^2$ = $-2y + 3$ Demikianlah mengenai persamaan parabola yang berpuncak di Aa, b. Semoga bermanfaat
parabola berikut yang terbuka ke atas adalah